हिंदी

In How Many Ways Can the Letters of the Word "Intermediate" Be Arranged So That:The Relative Order of Vowels and Consonants Do Not Alter? - Mathematics

Advertisements
Advertisements

प्रश्न

In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?

उत्तर

The relative positions of all the vowels and consonants is fixed.
     Arranging the six vowels at their places, without disturbing their respective places, we can arrange the six vowels in\[\frac{6!}{2!3!}\] ways.

Similarly, arranging the remaining 6 consonants at their places, without disturbing their respective places, we can arrange the 6 consonants in\[\frac{6!}{2!}\] ways.

By fundamental principle of counting, the number of words that can be formed =\[\frac{6!}{2!3!}\] X \[\frac{6!}{2!}\]= 21600

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.5 | Q 27.2 | पृष्ठ ४४

संबंधित प्रश्न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


If (n + 1)! = 90 [(n − 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

If P (n, 4) = 12 . P (n, 2), find n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


In how many ways can five children stand in a queue?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×