Advertisements
Advertisements
प्रश्न
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
उत्तर
\[LHS = \frac{{}^n C_r}{{}^{n - 1} C_{r - 1}} \]
\[ = \frac{n!}{r! \left( n - r \right)!} \times \frac{\left( r - 1 \right)! \left( n - 1 - r + 1 \right)!}{\left( n - 1 \right)!} \]
\[ = \frac{n \left( n - 1 \right)!}{r \left( r - 1 \right)! \left( n - r \right)!} \times \frac{\left( r - 1 \right)! \left( n - r \right)!}{\left( n - 1 \right)!} \]
\[ = \frac{n}{r} = RHS\]
∴ LHS = RHS
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
If (n + 3)! = 56 [(n + 1)!], find n.
If 5 P(4, n) = 6. P (5, n − 1), find n ?
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.