Advertisements
Advertisements
प्रश्न
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
उत्तर
\[LHS = n . {}^{n - 1} C_{r - 1} \]
\[ = \frac{n \left( n - 1 \right)!}{\left( r - 1 \right)! \left( n - 1 - r + 1 \right)!} \]
\[ = \frac{n!}{\left( r - 1 \right)! \left( n - r \right)!}\]
\[RHS = \left( n - r + 1 \right) {}^n C_r \]
\[ = \left( n - r + 1 \right) \frac{n!}{\left( r - 1 \right)! \left( n - r + 1 \right)!} \]
\[ = \left( n - r + 1 \right)\frac{n!}{\left( r - 1 \right)! \left( n - r + 1 \right)\left( n - r \right)!} \]
\[ = \frac{n!}{\left( r - 1 \right)! \left( n - r \right)!}\]
∴ LHS = RHS
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If P (9, r) = 3024, find r.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
In how many ways can five children stand in a queue?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.