हिंदी

If (N + 2)! = 60 [(N − 1)!], Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If (n + 2)! = 60 [(n − 1)!], find n. 

उत्तर

(n + 2)! = 60 [(n − 1)!]

\[\Rightarrow\](n + 2)\[\times\](n + 1)\[\times\](n)\[\times\]( 1)! = 60 [(n − 1)!]
\[\Rightarrow\](n + 2)\[\times\](n + 1)\[\times\](n) = 60
\[\Rightarrow\](n + 2)\[\times\](n + 1)\[\times\](n) = 5\[\times\]4\[\times\]3

∴ n = 3


shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.1 | Q 7 | पृष्ठ ४

संबंधित प्रश्न

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (n, 5) = 20. P(n, 3), find n ?


If P (n, 4) = 12 . P (n, 2), find n.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
SERIES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×