हिंदी

How Many Words Can Be Formed Out of the Letters of the Word 'Article', So that Vowels Occupy Even Places? - Mathematics

Advertisements
Advertisements

प्रश्न

How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?

उत्तर

The word ARTICLE consists of 3 vowels, which have to be arranged in 3 even places. This can be done in 3! ways.
Now, the remaining 4 consonants can be arranged in the remaining 4 places in 4! ways.
∴ Total number of words in which the vowels occupy only even places = 3!\[\times\]4! = 144

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.4 | Q 8 | पृष्ठ ३७

संबंधित प्रश्न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 1)! = 90 [(n − 1)!], find n.


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If P (n, 4) = 12 . P (n, 2), find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Write the number of diagonals of an n-sided polygon.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×