हिंदी

In How Many Ways Can a Lawn Tennis Mixed Double Be Made up from Seven Married Couples If No Husband and Wife Play in the Same Set? - Mathematics

Advertisements
Advertisements

प्रश्न

In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?

योग

उत्तर

Let two husbands A, B be selected out of seven males in 7P2  ways. excluding their wives, we have to select two ladies C,D out of remaining 5 wives is 5P2 ways.

Thus, number of ways of selecting the players for mixed double is = 7P2 × 5P2

= 21 × 10

= 210

Now, suppose A chooses C as partner (B will automatically go to D) or A chooses 0 as partner (B will automatically go to C) Thus we have, 4 other ways for teams.

Required number of ways = 210 × 4 = 840

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.4 | Q 9 | पृष्ठ ३७

संबंधित प्रश्न

If (n + 1)! = 90 [(n − 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (n, 5) = 20. P(n, 3), find n ?


If P(11, r) = P (12, r − 1) find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×