Advertisements
Advertisements
प्रश्न
If P (n, 5) = 20. P(n, 3), find n ?
उत्तर
P (n, 5) = 20. P(n, 3)
\[\Rightarrow \frac{n!}{(n - 5)!} = 20 \times \frac{n!}{(n - 3)!}\]
\[ \Rightarrow \frac{n!}{n!} = 20 \times \frac{(n - 5)!}{(n - 3)!}\]
\[ \Rightarrow 1 = 20 \times \frac{(n - 5)!}{(n - 3)(n - 4)(n - 5)!}\]
\[ \Rightarrow (n - 3)(n - 4) = 20\]
\[ \Rightarrow (n - 3)(n - 4) = 5 \times 4\]
\[\text{On comparing the two sides, we get}: \]
\[ \Rightarrow n - 3 = 5\]
\[ \Rightarrow n = 8\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 3)! = 56 [(n + 1)!], find n.
Prove that:
If nP4 = 360, find the value of n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
In how many ways can five children stand in a queue?
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.