Advertisements
Advertisements
प्रश्न
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
उत्तर
Total number of arrangements of 9 digits, taken 3 at a time = 9P3
∴ Total 3-digit numbers that can be formed by using the digits 1 to 9, if no digit is repeated = 9P3 = `9xx8xx7=504`
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
If nP4 = 360, find the value of n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
In how many ways can five children stand in a queue?
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.