Advertisements
Advertisements
Question
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Solution
Total number of arrangements of 9 digits, taken 3 at a time = 9P3
∴ Total 3-digit numbers that can be formed by using the digits 1 to 9, if no digit is repeated = 9P3 = `9xx8xx7=504`
APPEARS IN
RELATED QUESTIONS
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
If P (5, r) = P (6, r − 1), find r ?
If P(11, r) = P (12, r − 1) find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many three-digit numbers are there, with no digit repeated?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.