Advertisements
Advertisements
Question
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Solution
n +5Pn +1 =11(n-1)2n +3Pn
\[ \Rightarrow \frac{\left( n + 5 \right)!}{4!} = \frac{11\left( n - 1 \right)}{2} \times \frac{\left( n + 3 \right)!}{3!}\]
\[ \Rightarrow \frac{\left( n + 5 \right)!}{\left( n + 3 \right)!} = \frac{11\left( n - 1 \right)}{2} \times \frac{4!}{3!}\]
\[ \Rightarrow \frac{\left( n + 5 \right)\left( n + 4 \right)\left( n + 3 \right)!}{\left( n + 3 \right)!} = \frac{11\left( n - 1 \right)}{2} \times \frac{4 \times 3!}{3!}\]
\[ \Rightarrow \left( n + 5 \right)\left( n + 4 \right) = 22\left( n - 1 \right)\]
\[ \Rightarrow n^2 + 9n + 20 = 22n - 22\]
\[ \Rightarrow n^2 - 13n + 42 = 0\]
\[ \Rightarrow n = 7, 6\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that:
If nP4 = 360, find the value of n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of diagonals of an n-sided polygon.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the maximum number of points of intersection of 8 straight lines in a plane.