English

In How Many Ways Can the Letters of the Word"Intermediate" Be Arranged So That:The Vowels Always Occupy Even Places? - Mathematics

Advertisements
Advertisements

Question

In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?

Solution

The word INTERMEDIATE consists of 12 letters that include two Is, two Ts and three Es.

There are 6 vowels (I, I, E, E, E and A) that are to be arranged in six even places =\[\frac{6!}{2!3!}\]= 60

The remaining 6 consonants can be arranged amongst themselves in\[\frac{6!}{2!}\]

ways, which is equal to 360.
By fundamental principle of counting, the number of words that can be formed = 60\[\times\]360 = 21600

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.5 | Q 27.1 | Page 44

RELATED QUESTIONS

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If (n + 2)! = 60 [(n − 1)!], find n. 


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If nP4 = 360, find the value of n.


If P(11, r) = P (12, r − 1) find r.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


In how many ways can five children stand in a queue?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×