Advertisements
Advertisements
Question
If nP4 = 360, find the value of n.
Solution
nP4 = 360
\[ \Rightarrow \frac{n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right)!}{\left( n - 4 \right)!} = 360\]
\[ \Rightarrow n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right) = 360\]
\[ \Rightarrow n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right) = 6 \times 5 \times 4 \times 3\]
\[\text{On comparing the two sides, we get}: \]
\[n = 6\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
Prove that:
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If P (9, r) = 3024, find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.