Advertisements
Advertisements
Question
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Solution
This word consists of 7 letters that include two Rs, and two As.
The total number of words is the number of arrangements of 7 things, of which 2 are similar to one kind and 2 are similar to the second kind.
⇒\[\frac{7!}{2!2!}\]= 1260
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
If (n + 1)! = 90 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
Prove that:
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
Prove that:
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P (n, 4) = 12 . P (n, 2), find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many three-digit numbers are there, with no digit repeated?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.