Advertisements
Advertisements
Question
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
Solution
The word GANESHPURI consists of 10 distinct letters.
Number of letters = 10!
If we fix the first letter as G, the remaining 9 letters can be arranged in 9! ways to form the words.
∴ Number of words starting with the letter G = 9!
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
If P(11, r) = P (12, r − 1) find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.