English

How Many Permutations Can Be Formed by the Letters of the Word, 'Vowels', Whenthere is No Restriction on Letters? - Mathematics

Advertisements
Advertisements

Question

How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?

Solution

The word VOWELS consists of 6 distinct letters that can be arranged amongst themselves in 6! ways.
∴ Number of words that can be formed with the letters of the word VOWELS, without any restriction = 6! = 720

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.4 | Q 7.1 | Page 37

RELATED QUESTIONS

Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


If (n + 1)! = 90 [(n − 1)!], find n.


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (9, r) = 3024, find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with no digit repeated?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×