Advertisements
Advertisements
Question
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
Solution
Total number of words that can be formed with the letters of the word SUNDAY = 6! = 720
Now, if we fix the first letter as N, the remaining 5 places can be filled with the remaining 5 letters in 5! ways, i.e. 120.
If we fix the first letter as N and the last word as Y:
Remaining 4 places can be filled with 4 letters in 4! ways = 24
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
If (n + 2)! = 60 [(n − 1)!], find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (9, r) = 3024, find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Evaluate
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.