English

How Many Different Signals Can Be Made from 4 Red, 2 White and 3 Green Flags by Arranging All of Them Vertically on a Flagstaff? - Mathematics

Advertisements
Advertisements

Question

How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?

Solution

We have to arrange 9 flags, out of which 4 are of one kind (red), 2 are of another kind (white) and 3 are of the third kind (green).
∴ Total number of signals that can be generated with these flags =\[\frac{9!}{4!2!3!}\]= 1260

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.5 | Q 8 | Page 43

RELATED QUESTIONS

If P (n, 5) = 20. P(n, 3), find n ?


If P(11, r) = P (12, r − 1) find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×