English

How Many Three Letter Words Can Be Made Using the Letters of the Word 'Oriental'? - Mathematics

Advertisements
Advertisements

Question

How many three letter words can be made using the letters of the word 'ORIENTAL'?

Solution

The word ORIENTAL consists of 8 letters. In order to make three letter words, we need to permute these 8 letters, taken three at a time.
⇒ 8P3 = 8\[\times\]7\[\times\]6 = 336

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.4 | Q 12 | Page 37

RELATED QUESTIONS

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 1)! = 90 [(n − 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×