English

Four Books, One Each in Chemistry, Physics, Biology and Mathematics, Are to Be Arranged in a Shelf. in How Many Ways Can this Be Done? - Mathematics

Advertisements
Advertisements

Question

Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?

Solution

Here, all the four books are to be arranged on a shelf. This means that we have to find the number of arrangements of the books, taken all at a time.
⇒ 4P4
Now, nPn = n!
Similarly, 4P4  = 4! = 24

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 18 | Page 28

RELATED QUESTIONS

If (n + 2)! = 60 [(n − 1)!], find n. 


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

If P (n, 5) = 20. P(n, 3), find n ?


If P (9, r) = 3024, find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with no digit repeated?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×