Advertisements
Advertisements
Question
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Solution
Number of words that only end with I = Number of permutations of the remaining 8 letters, taken all at a time =\[\frac{8!}{2!}\]Number of words that start with M and end with I = Permutations of the remaining 7 letters, taken all at a time =\[\frac{7!}{2!}\]
Number of words that do not begin with M but end with I = Number of words that only end with I - Number of words that start with M and end with I
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Find the number of permutations of n different things taken r at a time such that two specified things occur together?