Advertisements
Advertisements
प्रश्न
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
उत्तर
Number of words that only end with I = Number of permutations of the remaining 8 letters, taken all at a time =\[\frac{8!}{2!}\]Number of words that start with M and end with I = Permutations of the remaining 7 letters, taken all at a time =\[\frac{7!}{2!}\]
Number of words that do not begin with M but end with I = Number of words that only end with I - Number of words that start with M and end with I
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 3)! = 56 [(n + 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If nP4 = 360, find the value of n.
If P (9, r) = 3024, find r.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.