मराठी

Prove that the Product of 2n Consecutive Negative Integers is Divisible by (2n)! - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the product of 2n consecutive negative integers is divisible by (2n)!

उत्तर

Let  

\[2n\] negative integers be 
\[\left( - r \right), \left( - r - 1 \right), \left( - r - 2 \right), . . . . , . . . , \left( - r - 2n + 1 \right)\]
Then, product = \[\left( - 1 \right)^{2n} \left( r \right)\left( r + 1 \right)\left( r + 2 \right), . . . . , . . . \left( r + 2n - 1 \right)\]
\[= \frac{\left( r - 1 \right)! \left( r \right)\left( r + 1 \right) \left( r + 2 \right) . . . . . . \left( r + 2n - 1 \right)}{\left( r - 1 \right)!}\]
\[ = \frac{\left( r + 2n - 1 \right)!}{\left( r - 1 \right)!}\]
\[ = \frac{\left( r + 2n - 1 \right)!}{\left( r - 1 \right)!\left( 2n \right)!} \times \left( 2n \right)!\]
\[ = {}^{r + 2n - 1} C_{2n} \times \left( 2n \right)!\]
This is divisible by 
\[\left( 2n \right)! .\]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.1 | Q 16 | पृष्ठ ८

संबंधित प्रश्‍न

Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


If P (5, r) = P (6, r − 1), find r ?


If nP4 = 360, find the value of n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Find the number of permutations of n different things taken r at a time such that two specified things occur together?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×