मराठी

How Many Different Words Can Be Formed from the Letters of the Word 'Ganeshpuri'? in How Many of These Words:The Letters P and I Respectively Occupy First and Last Place? - Mathematics

Advertisements
Advertisements

प्रश्न

How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?

उत्तर

If we fix the first letter as P and the last letter as I, the remaining 8 letters can be arranged in 8! ways to form the words.
∴  Number of words that start with P and end with I = 8!

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.4 | Q 6.3 | पृष्ठ ३७

संबंधित प्रश्‍न

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×