मराठी

If a Denotes the Number of Permutations of (X + 2) Things Taken All at a Time, B the Number of Permutations of X Things Taken 11 at a Time and C the Number of Permutations of X − 11 Things Taken All - Mathematics

Advertisements
Advertisements

प्रश्न

If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.

उत्तर

a = x+2Px+2 = (x+2)!
b  = xP11 =\[\frac{x!}{(x - 11)!}\]

c= x\[-\]11Px\[-\]11 =\[(x - 11)!\]

a = 182 bc

\[\Rightarrow\] (x+2)! = 182\[\frac{x!}{\left( x - 11 \right)!}\]\[\times \left( x - 11 \right)!\]
\[\Rightarrow\](x+2)! = 182 (x!)
\[\Rightarrow \frac{\left( x + 2 \right)!}{x!} = 182\]
\[ \Rightarrow \left( x + 2 \right)\left( x + 1 \right) = 182\]
\[ \Rightarrow \left( x + 2 \right)\left( x + 1 \right) = 14 \times 13 \]
\[ \Rightarrow x + 2 = 14\]
\[ \Rightarrow x = 12\]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 28 | पृष्ठ २९

संबंधित प्रश्‍न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P(11, r) = P (12, r − 1) find r.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


In how many ways can five children stand in a queue?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many three-digit numbers are there, with no digit repeated?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×