मराठी

Find the Number of Different 4-letter Words, with Or Without Meanings, that Can Be Formed from the Letters of the Word 'Number'. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.

उत्तर

Here, we need to permute four of the letters from the available 6 letters of the word NUMBER.
Number of different four letter words = Number of arrangements of 6 letters, taken 4 at a time =6 P4
\[= \frac{6!}{(6 - 4)!}\]
\[ = \frac{6!}{2!}\]
\[ = \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!}\]
\[ = 6 \times 5 \times 4 \times 3 \]
\[ = 360\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 19 | पृष्ठ २८

संबंधित प्रश्‍न

Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 1)! = 90 [(n − 1)!], find n.


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P(11, r) = P (12, r − 1) find r.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×