Advertisements
Advertisements
प्रश्न
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
उत्तर
P (15, r − 1):P (16, r − 2) = 3:4
\[\Rightarrow \frac{15!}{\left( 15 - r + 1 \right)!} \times \frac{(16 - r + 2)!}{16!} = \frac{3}{4}\]
\[ \Rightarrow \frac{15!}{\left( 16 - r \right)!} \times \frac{\left( 18 - r \right)!}{16 \times 15!} = \frac{3}{4}\]
\[ \Rightarrow \frac{\left( 18 - r \right)\left( 17 - r \right)\left( 16 - r \right)!}{\left( 16 - r \right)!\left( 16 \right)} = \frac{3}{4}\]
\[ \Rightarrow \left( 18 - r \right)\left( 17 - r \right) = 12\]
\[ \Rightarrow \left( 18 - r \right)\left( 17 - r \right) = 4 \times 3\]
\[\text{On comparing the LHS and the RHS in above expression, we get}: \]
\[ \Rightarrow 18 - r = 14\]
\[ \Rightarrow r = 14\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If (n + 1)! = 90 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
If P (9, r) = 3024, find r.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
In how many ways can five children stand in a queue?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
Find the total number of permutations of the letters of the word 'INSTITUTE'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.