मराठी

Prove That: N ! ( N − R ) ! = N (N − 1) (N − 2) ... (N − (R − 1)) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

उत्तर

\[ LHS = \frac{n!}{(n - r)!}\]
\[ = \frac{n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right) . . . \left( n - r + 1 \right)\left[ \left( n - r \right)! \right]}{(n - r)!}\]
\[ = n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right) . . . \left( n - r + 1 \right)\]
\[ = n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right) . . . \left[ n - \left( r - 1 \right) \right] = RHS\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.1 | Q 11.1 | पृष्ठ ५

संबंधित प्रश्‍न

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 3)! = 56 [(n + 1)!], find n.


If P (5, r) = P (6, r − 1), find r ?


If P (9, r) = 3024, find r.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


How many three-digit numbers are there, with distinct digits, with each digit odd?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many three-digit numbers are there, with no digit repeated?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the number of diagonals of an n-sided polygon.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×