Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
उत्तर
\[ LHS = \frac{n!}{\left( n - r \right)!r!} + \frac{n!}{\left( n - r + 1 \right)!}\]
\[ = \frac{n!}{\left( n - r \right)!r!} + \frac{n!}{(n - r + 1) [(n - r)!]}\]
\[ = \frac{n!\left( n - r + 1 \right) + n!r!}{r!\left( n - r + 1 \right) [(n - r)!]}\]
\[ = \frac{n!\left( n + 1 \right) - n!r! + n!r!}{r!\left( n - r + 1 \right)\left( n - r \right)!}\]
\[ = \frac{n!(n + 1)}{r!\left( n - r + 1 \right)\left( n - r \right)!}\]
\[ = \frac{\left( n + 1! \right)}{r!\left( n - r + 1 \right)!} = \text{RHS}\]
\[ \text{Hence proved} .\]
APPEARS IN
संबंधित प्रश्न
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 2)! = 60 [(n − 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many three-digit numbers are there, with no digit repeated?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
SERIES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.