मराठी

How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time. - Mathematics

Advertisements
Advertisements

प्रश्न

How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.

एका वाक्यात उत्तर

उत्तर

Number of words taking all the letters together = 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720.

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.4 | Q 11.2 | पृष्ठ ३७

संबंधित प्रश्‍न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If P (n, 5) = 20. P(n, 3), find n ?


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


How many three-digit numbers are there, with no digit repeated?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
SERIES


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the number of diagonals of an n-sided polygon.


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×