Advertisements
Advertisements
प्रश्न
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
उत्तर
\[LHS = n . {}^{n - 1} C_{r - 1} \]
\[ = \frac{n \left( n - 1 \right)!}{\left( r - 1 \right)! \left( n - 1 - r + 1 \right)!} \]
\[ = \frac{n!}{\left( r - 1 \right)! \left( n - r \right)!}\]
\[RHS = \left( n - r + 1 \right) {}^n C_r \]
\[ = \left( n - r + 1 \right) \frac{n!}{\left( r - 1 \right)! \left( n - r + 1 \right)!} \]
\[ = \left( n - r + 1 \right)\frac{n!}{\left( r - 1 \right)! \left( n - r + 1 \right)\left( n - r \right)!} \]
\[ = \frac{n!}{\left( r - 1 \right)! \left( n - r \right)!}\]
∴ LHS = RHS
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
Prove that:
If P (n, 5) = 20. P(n, 3), find n ?
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.