मराठी

How Many 6-digit Telephone Numbers Can Be Constructed with Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 If Each Number Starts with 35 and No Digit Appears More than Once? - Mathematics

Advertisements
Advertisements

प्रश्न

How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?

उत्तर

Total available digits = 10
Out of these, 3 and 5 have already been used to make the first two digits.
∴ Number of available digits = 8
The telephone number consists of 6 digits. The initial numbers have already been fixed as 35.

Since repetition is not allowed, the number of telephone numbers that can be formed is equal to the number of  arrangements of the 8 digits, taken 4 at a time.
⇒ 8P4 =\[\frac{8!}{4!} = 8 \times 7 \times 6 \times 5 = 1680\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 26 | पृष्ठ २९

संबंधित प्रश्‍न

Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×