Advertisements
Advertisements
प्रश्न
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
उत्तर
Number of arrangements of the boys = Number of arrangements of the 6 boys taken 6 at a time = 6!
Number of arrangements of the girls = Number of arrangements of the 5 girls taken 5 at a time = 5!
Total number of arrangements = 6! x 5! = 86400
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
If (n + 1)! = 90 [(n − 1)!], find n.
If P (n, 5) = 20. P(n, 3), find n ?
If P (9, r) = 3024, find r.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
In how many ways can five children stand in a queue?
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many three-digit numbers are there, with no digit repeated?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.