मराठी

How Many Three-digit Numbers Are There, with Distinct Digits, with Each Digit Odd? - Mathematics

Advertisements
Advertisements

प्रश्न

How many three-digit numbers are there, with distinct digits, with each digit odd?

उत्तर

The odd digits are 1, 3, 5, 7 and 9.

Required number of ways = Number of arrangements of five digits ( 1, 3, 5, 7 and 9), taken three at a time = 5P3

\[= \frac{5!}{(5 - 3)!}\]
\[ = \frac{5!}{2!}\]
\[ = \frac{5 \times 4 \times 3 \times 2!}{2!}\]
\[ = 5 \times 4 \times 3\]
\[ = 60\]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 20 | पृष्ठ २८

संबंधित प्रश्‍न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 1)! = 90 [(n − 1)!], find n.


If (n + 3)! = 56 [(n + 1)!], find n.


If P (n, 5) = 20. P(n, 3), find n ?


If nP4 = 360, find the value of n.


If P (n, 4) = 12 . P (n, 2), find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


In how many ways can five children stand in a queue?


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×