मराठी

Prove That:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + N . P (N, N) = P (N + 1, N + 1) − 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.

उत्तर

1.P (1, 1) + 2. P (2, 2) + 3. P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1
P (n,n) = n!
1.1! + 2.2! + 3.3! ......+ n.n! = (n+1)! − 1
LHS = 1.1! + 2.2! + 3.3! ......+ n.n!

\[= \sum^n_{r = 1} r . r!\]
\[ = \sum^n_{r = 1} \left[ \left( r + 1 \right) - 1 \right] r!\]
\[ = \sum^n_{r = 1} \left[ \left( r + 1 \right) r! - r! \right]\]
\[ = \sum^n_{r = 1} {(r + 1)! - r!} \]
\[ = \left( 2! - 1! \right) + \left( 3! - 2! \right) + . . . \left[ \left( n + 1 \right)! - n! \right]\]
\[ = \left[ \left( n + 1 \right)! - 1! \right] \]
\[ = \left[ \left( n + 1 \right)! - 1 \right] = \text{RHS}\]
\[ \text{Hence, proved} .\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 12 | पृष्ठ २८

संबंधित प्रश्‍न

If (n + 1)! = 90 [(n − 1)!], find n.


If (n + 3)! = 56 [(n + 1)!], find n.


If P (5, r) = P (6, r − 1), find r ?


If P (n, 5) = 20. P(n, 3), find n ?


If P (n, 4) = 12 . P (n, 2), find n.


In how many ways can five children stand in a queue?


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Write the number of diagonals of an n-sided polygon.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×