Advertisements
Advertisements
प्रश्न
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
उत्तर
This word consists of 7 letters that include two Rs, and two As.
The total number of words is the number of arrangements of 7 things, of which 2 are similar to one kind and 2 are similar to the second kind.
⇒\[\frac{7!}{2!2!}\]= 1260
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If (n + 1)! = 90 [(n − 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
If nP4 = 360, find the value of n.
In how many ways can five children stand in a queue?
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many three-digit numbers are there, with no digit repeated?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
INDIA
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of diagonals of an n-sided polygon.
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.