मराठी

Four Letters E, K, S and V, One in Each, Were Purchased from a Plastic Warehouse. How Many Ordered Pairs of Letters, to Be Used as Initials, Can Be Formed from Them? - Mathematics

Advertisements
Advertisements

प्रश्न

Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?

उत्तर

Here, we need to find out the number of pairs of the letters that can be formed with the 4 letters.
Required number of ordered pairs = Number of arrangements of  four letters, taken two at a time = 4P2

\[= \frac{4!}{\left( 4 - 2 \right)!}\]

\[ = \frac{4!}{2!}\]

\[ = \frac{4 \times 3 \times 2!}{2!}\]

\[ = 4 \times 3\]

\[ = 12\]

 

 

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 17 | पृष्ठ २८

संबंधित प्रश्‍न

Prove that: n! (n + 2) = n! + (n + 1)!


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (5, r) = P (6, r − 1), find r ?


If P (n, 5) = 20. P(n, 3), find n ?


If P (9, r) = 3024, find r.


If P(11, r) = P (12, r − 1) find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


In how many ways can five children stand in a queue?


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


Write the maximum number of points of intersection of 8 straight lines in a plane.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×