मराठी

Four Books, One Each in Chemistry, Physics, Biology and Mathematics, Are to Be Arranged in a Shelf. in How Many Ways Can this Be Done? - Mathematics

Advertisements
Advertisements

प्रश्न

Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?

उत्तर

Here, all the four books are to be arranged on a shelf. This means that we have to find the number of arrangements of the books, taken all at a time.
⇒ 4P4
Now, nPn = n!
Similarly, 4P4  = 4! = 24

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.3 | Q 18 | पृष्ठ २८

संबंधित प्रश्‍न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that: n! (n + 2) = n! + (n + 1)!


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If nP4 = 360, find the value of n.


If P (n, 4) = 12 . P (n, 2), find n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×