मराठी

If 35cn +7 = 35c4n − 2 , Then Write the Values of N. - Mathematics

Advertisements
Advertisements

प्रश्न

If 35Cn +7 = 35C4n − 2 , then write the values of n.

उत्तर

 35Cn +7 = 35C4n − 2 

\[n + 7 + 4n - 2 = 35\]   [∵\[{}^n C_x =^n C_y \Rightarrow n = x + y\ \text{or} x = y\]]
\[\Rightarrow 5n = 30\]
\[ \Rightarrow n = 6\]
\[\text{And}, n + 7 = 4n - 2\]
\[ \Rightarrow n = 3\]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.4 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.4 | Q 2 | पृष्ठ २४

संबंधित प्रश्‍न

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 1)! = 90 [(n − 1)!], find n.


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×