मराठी

Write the Number of Ways in Which 5 Red and 4 White Balls Can Be Drawn from a Bag Containing 10 Red and 8 White Balls. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.

उत्तर

4 white and 5 red balls are to be selected from 8 white and 10 red balls.
∴ Required number of ways =\[{}^8 C_4 \times^{10} C_5\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.4 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.4 | Q 9 | पृष्ठ २४

संबंधित प्रश्‍न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 1)! = 90 [(n − 1)!], find n.


If (n + 3)! = 56 [(n + 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×