Advertisements
Advertisements
प्रश्न
If 5 P(4, n) = 6. P (5, n − 1), find n ?
उत्तर
5 P(4, n) = 6. P (5, n − 1)
5 4Pn = 65Pn
-1\[\Rightarrow 5 \times \frac{4!}{\left( 4 - n \right)!} = 6 \times \frac{5!}{\left( 5 - n + 1 \right)!}\]
\[ \Rightarrow 5 \times \frac{\left( 6 - n \right)!}{\left( 4 - n \right)!} = 6 \times \frac{5!}{4!}\]
\[ \Rightarrow 5 \times \frac{\left( 6 - n \right)\left( 6 - n - 1 \right)\left( 6 - n - 2 \right)!}{\left( 4 - n \right)} = 6 \times \frac{5 \times 4!}{4!}\]
\[ \Rightarrow 5 \times \frac{\left( 6 - n \right)\left( 5 - n \right)\left( 4 - n \right)!}{\left( 4 - n \right)} = 6 \times 5\]
\[ \Rightarrow \left( 6 - n \right)\left( 5 - n \right) = 6\]
\[ \Rightarrow \left( 6 - n \right)\left( 5 - n \right) = 3 \times 2\]
\[\text{On comparing the LHS and the RHS, we get}: \]
\[ \Rightarrow 6 - n = 3\]
\[ \Rightarrow n = 3\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 3)! = 56 [(n + 1)!], find n.
Prove that:
If P (5, r) = P (6, r − 1), find r ?
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P(11, r) = P (12, r − 1) find r.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.