Advertisements
Advertisements
प्रश्न
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
उत्तर
In a dictionary, the words are arranged in the alphabetical order. Thus, in the given problem, we must consider the words beginning with I, I, R, S, T and U.
I will occur at the first place as often as the ways of arranging the remaining 5 letters, when taken all at a time.
Thus, I will occur 5! times.
Similarly, R will occur at the first place the same number of times.
∴ Number of words starting with I = 5!
Number of words starting with R =\[\frac{5!}{2!}\]
The word will now start with S, which is as per the requirement of the word SURITI.
Alphabetically, the next letter would be I, i.e. SI. The remaining four letters can be arranged in 4! ways.
Alphabetically, the next letter would now be R, i.e. SR. The remaining four letters can be arranged in\[\frac{4!}{2!}\] ways.
Alphabetically, the next letter would now be T, i.e. ST. The remaining four letters can be arranged in\[\frac{4!}{2!}\] ways.
Alphabetically, the next letter would now be U, i.e. SU, which is as per the requirement of the word SURITI.
After SU, alphabetically, the third letter would be I, i.e. SUI. Thus, the remaining 3 letters can be arranged in 3! ways.
The next third letter that can come is R, i.e. SUR, which is as per the requirement of the word SURITI.
After SUR, the next letter that will come is I, i.e. SURI, which is as per the requirement of the word SURITI.
The next word arranged in the dictionary will be SURIIT.
Then, the next word will be SURITI.
Rank of the word SURITI in the dictionary = 5! +\[\frac{5!}{2!}\] + 4! +\[\frac{4!}{2!}\] +\[\frac{4!}{2!}\]+ 3! + 2 = 236
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
If P (5, r) = P (6, r − 1), find r ?
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.