Advertisements
Advertisements
प्रश्न
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
उत्तर
In a dictionary, the words are arranged in the alphabetical order. Thus, in the given problem, we must consider the words beginning with I, I, R, S, T and U.
I will occur at the first place as often as the ways of arranging the remaining 5 letters, when taken all at a time.
Thus, I will occur 5! times.
Similarly, R will occur at the first place the same number of times.
∴ Number of words starting with I = 5!
Number of words starting with R =\[\frac{5!}{2!}\]
The word will now start with S, which is as per the requirement of the word SURITI.
Alphabetically, the next letter would be I, i.e. SI. The remaining four letters can be arranged in 4! ways.
Alphabetically, the next letter would now be R, i.e. SR. The remaining four letters can be arranged in\[\frac{4!}{2!}\] ways.
Alphabetically, the next letter would now be T, i.e. ST. The remaining four letters can be arranged in\[\frac{4!}{2!}\] ways.
Alphabetically, the next letter would now be U, i.e. SU, which is as per the requirement of the word SURITI.
After SU, alphabetically, the third letter would be I, i.e. SUI. Thus, the remaining 3 letters can be arranged in 3! ways.
The next third letter that can come is R, i.e. SUR, which is as per the requirement of the word SURITI.
After SUR, the next letter that will come is I, i.e. SURI, which is as per the requirement of the word SURITI.
The next word arranged in the dictionary will be SURIIT.
Then, the next word will be SURITI.
Rank of the word SURITI in the dictionary = 5! +\[\frac{5!}{2!}\] + 4! +\[\frac{4!}{2!}\] +\[\frac{4!}{2!}\]+ 3! + 2 = 236
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 1)! = 90 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
If P (5, r) = P (6, r − 1), find r ?
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P(11, r) = P (12, r − 1) find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
In how many ways can five children stand in a queue?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many three-digit numbers are there, with no digit repeated?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.