Advertisements
Advertisements
प्रश्न
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
उत्तर
\[\frac{(2n)!}{3!(2n - 3)!}: \frac{n!}{2!(n - 2)!} = 44: 3 \]
\[ \Rightarrow \frac{(2n)!}{3!(2n - 3)!} \times \frac{2!(n - 2)!}{n!} = \frac{44}{3}\]
\[ \Rightarrow \frac{(2n)(2n - 1)(2n - 2) [(2n - 3)!]}{3(2!)(2n - 3)!} \times \frac{2!(n - 2)!}{n(n - 1) [(n - 2)!]} = \frac{44}{3}\]
\[ \Rightarrow \frac{(2n)(2n - 1)(2n - 2)}{3} \times \frac{1}{n(n - 1)} = \frac{44}{3}\]
\[ \Rightarrow \frac{(2n)(2n - 1)(2)(n - 1)}{3} \times \frac{1}{n(n - 1)} = \frac{44}{3}\]
\[ \Rightarrow \frac{4(2n - 1)n(n - 1)}{3} \times \frac{1}{n(n - 1)} = \frac{44}{3}\]
\[ \Rightarrow \frac{4(2n - 1)}{3} = \frac{44}{3}\]
\[ \Rightarrow (2n - 1) = 11\]
\[ \Rightarrow 2n = 12\]
\[ \Rightarrow n = 6\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Prove that: n! (n + 2) = n! + (n + 1)!
Prove that:
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (5, r) = P (6, r − 1), find r ?
If P (n, 5) = 20. P(n, 3), find n ?
If P(11, r) = P (12, r − 1) find r.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.