हिंदी

How Many Different Words Can Be Formed from the Letters of the Word 'Ganeshpuri'? in How Many of These Words:The Vowels Always Occupy Even Places? - Mathematics

Advertisements
Advertisements

प्रश्न

How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?

उत्तर

 The word GANESHPURI consists of 4 vowels that have to be arranged in the 5 even places. This can be done in 5! ways.
Now, the remaining 6 consonants can be arranged in the remaining 6 places in 6! ways.
Total number of words in which the vowels occupy even places = 5!\[\times\]6!

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.4 | Q 6.4 | पृष्ठ ३७

संबंधित प्रश्न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (n, 5) = 20. P(n, 3), find n ?


If P (9, r) = 3024, find r.


If P(11, r) = P (12, r − 1) find r.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×