Advertisements
Advertisements
प्रश्न
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
उत्तर
Numbers greater than a million can be formed when the first digit can be any one out of the given digits 1, 2, 0, 2, 4, 2, 4, except 0.
Number of arrangements of the given digits 1, 2, 0, 2, 4, 2, 4 = Arrangements of 7 things of which 3 are similar to the first kind, and 2 are similar to the second kind =\[\frac{7!}{2!3!}\]
But, these arrangements also include the numbers in which the first digit is zero. This will make the number less than a million. So, it needs to be subtracted.
Number where the first digit is zero = Number of arrangements of the remaining 6 digits 1, 2, 2, 4, 2, 4 =\[\frac{6!}{2!3!}\]
Numbers greater than 1 million =\[\frac{7!}{2!3!}\]-\[\frac{6!}{2!3!}\]= 360
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
If P (5, r) = P (6, r − 1), find r ?
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the number of diagonals of an n-sided polygon.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.