Advertisements
Advertisements
प्रश्न
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
उत्तर
In a dictionary, the words are listed and ranked in alphabetical order. In the given problem, we need to find the rank of the word MOTHER.
For finding the number of words starting with E, we have to find the number of arrangements of the remaining 5 letters.
Number of such arrangements = 5!
For finding the number of words starting with H, we have to find the number of arrangements of the remaining 4 letters.
Number of such arrangements = 5!
For finding the number of words starting with M, fixing the next letter as E, we have to find the number of arrangements of the remaining 4 letters, which is 4!.
For finding the number of words starting with M, fixing the next letter as H, we have to find the number of arrangements of the remaining 4 letters, which is 4!.
For finding the number of words starting with M, fixing the second letter as O, and the third letter as E, we have to find the number of arrangements of the remaining 3 letters, which is 3!.
For finding the number of words starting with M, fixing the second letter as O, and the third letter as H, we have to find the number of arrangements of the remaining 3 letters, which is 3!.
For finding the number of words starting with M, fixing the second letter as O, and the third letter as R, we have to find the number of arrangements of the remaining 3 letters, which is 3!.
For finding the number of words starting with M, fixing the second letter as O, the third letter as T, and the fourth letter as E, we have to find the number of arrangements of the remaining 2 letters, which is 2!.
Now, the next word formed would be MOTHER.
Number of words after which we reach the word MOTHER = 5!+5!+4!+4!+3!+3!+3!+2!+1 = 309
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
If P (n, 5) = 20. P(n, 3), find n ?
If P(11, r) = P (12, r − 1) find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
How many three-digit numbers are there, with no digit repeated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the maximum number of points of intersection of 8 straight lines in a plane.