हिंदी

How Many 6-digit Telephone Numbers Can Be Constructed with Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 If Each Number Starts with 35 and No Digit Appears More than Once? - Mathematics

Advertisements
Advertisements

प्रश्न

How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?

उत्तर

Total available digits = 10
Out of these, 3 and 5 have already been used to make the first two digits.
∴ Number of available digits = 8
The telephone number consists of 6 digits. The initial numbers have already been fixed as 35.

Since repetition is not allowed, the number of telephone numbers that can be formed is equal to the number of  arrangements of the 8 digits, taken 4 at a time.
⇒ 8P4 =\[\frac{8!}{4!} = 8 \times 7 \times 6 \times 5 = 1680\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.3 | Q 26 | पृष्ठ २९

संबंधित प्रश्न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 1)! = 90 [(n − 1)!], find n.


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If P (n, 4) = 12 . P (n, 2), find n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×