Advertisements
Advertisements
प्रश्न
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
उत्तर
\[LHS = {}^{2n} C_n + {}^{2n} C_{n - 1} \]
\[ = \frac{\left( 2n \right)!}{n! n!} + \frac{\left( 2n \right)!}{\left( n - 1 \right)! \left( 2n - n + 1 \right)!}\]
\[ = \frac{\left( 2n \right)!}{n! n!} + \frac{\left( 2n \right)!}{\left( n - 1 \right)! \left( n + 1 \right)!}\]
\[ = \frac{\left( 2n \right)!}{n \left( n - 1 \right)! n!} + \frac{\left( 2n \right)!}{\left( n - 1 \right)! \left( n + 1 \right)n!}\]
\[ = \frac{\left( 2n \right)!}{n! \left( n - 1 \right)!} \left[ \frac{1}{n} + \frac{1}{n + 1} \right]\]
\[ = \frac{\left( 2n \right)!}{n! \left( n - 1 \right)!} \left[ \frac{2n + 1}{n \left( n + 1 \right)} \right]\]
\[ = \frac{\left( 2n + 1 \right)!}{n! \left( n + 1 \right)!}\]
\[RHS = \frac{1}{2} {}^{2n + 2} C_{n + 1} \]
\[ = \frac{1}{2} \left[ \frac{\left( 2n + 2 \right)!}{\left( n + 1 \right)! \left( 2n + 2 - n - 1 \right)!} \right]\]
\[ = \frac{1}{2} \left[ \frac{\left( 2n + 2 \right)!}{\left( n + 1 \right)! \left( n + 1 \right)!} \right]\]
\[ = \frac{1}{2} \left[ \frac{\left( 2n + 2 \right) \left( 2n + 1 \right)!}{\left( n + 1 \right) n! \left( n + 1 \right)!} \right]\]
\[ = \frac{1}{2} \left[ \frac{2\left( n + 1 \right) \left( 2n + 1 \right)!}{\left( n + 1 \right) n! \left( n + 1 \right)!} \right]\]
\[ = \frac{\left( 2n + 1 \right)!}{n! \left( n + 1 \right)!}\]
∴ LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that: n! (n + 2) = n! + (n + 1)!
Prove that:
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P (9, r) = 3024, find r.
How many three-digit numbers are there, with distinct digits, with each digit odd?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Evaluate
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of diagonals of an n-sided polygon.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.