Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[ LHS = \frac{n!}{(n - r)!}\]
\[ = \frac{n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right) . . . \left( n - r + 1 \right)\left[ \left( n - r \right)! \right]}{(n - r)!}\]
\[ = n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right) . . . \left( n - r + 1 \right)\]
\[ = n\left( n - 1 \right)\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right) . . . \left[ n - \left( r - 1 \right) \right] = RHS\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Prove that: n! (n + 2) = n! + (n + 1)!
If P (5, r) = P (6, r − 1), find r ?
If P (n, 5) = 20. P(n, 3), find n ?
If P (n, 4) = 12 . P (n, 2), find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.