Advertisements
Advertisements
प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
उत्तर
\[\ \left( n + 1 \right)\left( n + 2 \right)\left( n + 3 \right) . . . \left( 2n \right) = \frac{\left( 1 \right)\left( 2 \right)\left( 3 \right) . . . \left( n \right)\left( n + 1 \right)\left( n + 2 \right)\left( n + 3 \right) . . . \left( 2n \right)}{\left( 1 \right)\left( 2 \right)\left( 3 \right) . . . \left( n \right)}\]
\[ = \frac{\left( 2n \right)}{n!}\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
If (n + 1)! = 90 [(n − 1)!], find n.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
In how many ways can five children stand in a queue?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.